自由落体公式t等于什么(根据动量守恒定律,人在电梯坠地前的瞬间往上跳一下会得救吗?)

电梯失控后迅速下坠,人和电梯都会因为重力的作用而获得了动量,人之所以会在这种情况下受到伤害,是因为在自己在下坠过程中获得的动量在坠地的瞬间因为与地面的碰撞而得到释放。根据动量守恒定律,如果人在即将坠地的瞬间通过与电梯之间的相互作用,将自己的携带的动量降为零(或者身体可以承受的数值),那么他就会得救。因此可以说,从理论上来讲,这个办法似乎有效,但实际上呢?下面我们就来讨论一下。

如果电梯失控并迅速下坠,人在坠地前的瞬间往上跳一下会得救吗?

自由落体公式t等于什么(根据动量守恒定律,人在电梯坠地前的瞬间往上跳一下会得救吗?)

首先我们要考虑的是,在这种情况下人究竟能不能跳起来,因为在自由落体的过程中,人和电梯都是处于失重状态,不可能像平常一样通过曲腿下蹲的动作来完成重心的下移,所以这个人还需要利用电梯扶手一类的物件才能做好起跳的准备。

自由落体公式t等于什么(根据动量守恒定律,人在电梯坠地前的瞬间往上跳一下会得救吗?)

现在我们假设这部失控的电梯从20米(大概6层楼那么高)处开始以自由落体的方式迅速下坠,根据公式 v = √2gh (注:g为重力加速度,为了方便计算,本文将其取值为10m/s^2,h为下落高度)我可以得出,在电梯坠地的这个人的瞬时速度为20米/秒,也就是说,这个人需要在坠地前的瞬间制造一个20米/秒的速度,并且方向是垂直地面向上的,才可以将自己的动量降为零,事实上,这是人类无法做到的。

自由落体公式t等于什么(根据动量守恒定律,人在电梯坠地前的瞬间往上跳一下会得救吗?)

人类立定跳高的世界纪录为1.8米(在1974年由瑞典人鲁内.阿尔文创造),估计这离人类的极限也差不了多少了,我们假设这个人相当强壮,也能跳这么高,那么他所能制造的瞬时速度就是 v = √2gh = √(2 x 10 x 1.8) = 6米/秒。

这就说明了,即使这个人完美地完成了精准且有力的跳跃动作,他最多也只是将自己的速度降低了一些,当电梯坠地时,他还是会以14米/秒(50.4公里/小时)的速度撞向地面,我们可以看到,这样的高速碰撞(大概就是下图中这个样子)并不是人类的身体能够承受的,因此这个人是不会得救的。

自由落体公式t等于什么(根据动量守恒定律,人在电梯坠地前的瞬间往上跳一下会得救吗?)

那么如果将高度降低一些,比如说降成10米又会怎么样呢?通过相似的计算我们可以得出,在这种情况下电梯坠地的瞬间速度大约为14/米,而由于这个人的完美跳跃,当电梯坠地时这个人的瞬间速度就变成了8米/秒(28.8公里/小时),因此这种程度的碰撞仍然是相当危险的。

除此之外,我们还需要考虑一个时间的问题,假设电梯从20米处开始自由落体,根据公式 t = √(2h/g)可以计算出,这部电梯从失控到坠地的总共时间仅为2秒,也就是说这个人必须在2秒的时间内做好起跳的准备,并在即将坠地的瞬间往上跳(这里还要考虑神经系统的反应以及肌肉发力所需要的时间),根据我们的常识来讲,这根本就是不可能的。

自由落体公式t等于什么(根据动量守恒定律,人在电梯坠地前的瞬间往上跳一下会得救吗?)

值得一提的是,根据动量守恒定律,这个人还可以通过扔东西的方式来降低自身的动量,我们再来从这个方面来简单讨论一下。我们假设电梯里这个人体重60Kg,手上有一个200克(0.2Kg)的物体(比如说手机),现在电梯从20米处开始自由落体,那么在坠地的瞬间,这个人携带的动量就为 p = mv = 60 x 20 = 1200kg.m/s。也就是说,如果在即将坠地的瞬间,这个人将手上的物体以 v = 1200/0.2 = 6000米/秒(2.16万公里/小时)的初始速度向下扔出去,他也可以将自身的动量降为零,并因此而得救。

自由落体公式t等于什么(根据动量守恒定律,人在电梯坠地前的瞬间往上跳一下会得救吗?)

综上所述,如果电梯失控并迅速下坠(自由落体运动),那么除了那些传说中的超级人类以外,我们普通人是不可能通过“在电梯坠地前的瞬间往上跳一下”以及类似的方法来摆脱困境的。然而好消息是,现代电梯拥有很多的保护措施(如限速器、安全钳、缓冲器等等等等),可以有效地避免电梯高速下坠的风险,因此我们大可不必为此担心,当然这必须要有个前提,那就是按照正确的方法使用电梯。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 87868862@qq.com 举报,一经查实,本站将立刻删除。

(0)
上一篇 5天前
下一篇 5天前

相关推荐

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注